1- How do you prepare $0,2 \mathrm{M} 250 \mathrm{~mL}$ calcium citrate solution from calcium citrate tetrahydrate? Calculate the $\%(\mathrm{w} / \mathrm{v})$ concentration of this solution.
First part of the question
$\left(\mathrm{Ca}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ca}: 40 ; \mathrm{C}: 12 ; \mathrm{O}: 16 ; \mathrm{H}: 1.\right)$
Molecular weight of $\mathrm{Ca}_{3}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}=570.49 \mathrm{~g} / \mathrm{mol}$
$M=n / v \quad 0,2=n / 0,25 n=0,05$
$m=n \times M W m=0,05 \times 570,49=28,5245 \mathrm{~g}$
Alternative way for the solution of the first part of the question.
$0,2 \mathrm{M}$ means $0,2 \mathrm{~mol}$ in 1000 mL
X mol in 250 mL
$\mathrm{X}=0,05 \mathrm{~mol}$
If 1 mol of calcium citrate tetrahydrate is 570.49 g
$0,05 \mathrm{~mol}$ of calcium citrate tetrahydrate is $28,5245 \mathrm{~g}$

Preparing the solution

If your balance is analytical (which means capable of weighing $0,1 \mathrm{mg}$ or $0,0001 \mathrm{~g}$ you may leave your result as it is.

But if your balance's sensitivity is $0,01 \mathrm{~g}$ then you should round your result to 2 digit which is 28.52 g .

Select the appropriately sized flask. Measure and transfer the calculated mass of solid material into the flask, preferably using a funnel to assure no material is lost during transfer. Rinse the sides of the funnel with your solvent (e.g. water for aqueous solutions) down into the flask to capture any residual material adhering to the funnel.

Next, fill the flask about halfway with your solvent, cap the flask and swirl to dissolve the solid material into solution. Once the solid material has been dissolved, fill the flask with your solvent by carefully adding enough solvent to raise the base of the meniscus of the solution to the level of the etched line. Finally, cap, mix, swirl and store your prepared solution until ready to use.

Second part of the question from grams

This solution contains $28,5245 \mathrm{~g}$ calcium citrate tetrahydrate in 250 mL solution

If 570.49 g calcium citrate tetrahydrate contains $498,49 \mathrm{~g}$ calcium citrate
$28,5245 \mathrm{~g}$ calcium citrate tetrahydrate contains xg of calcium citrate 24,9245 g
$\% \mathrm{w} / \mathrm{v}$ means grams of solute in a 100 mL solution therefore;
if $24,9245 \mathrm{~g}$ calcium citrate presents in 250 mL x g presents in 100 mL
$x=9,9698$ This solution is $9,96 \%(w / v)$.

2- How do you prepare $0,04 \mathrm{~N} 100 \mathrm{~mL}$ of Zinc sulfate solution from Zinc sulfate heptahydrate? If you take 5 mL from this solution and diluted to 1 L using distilled water what is the $\% \mathrm{w} / \mathrm{v}$ concentration and ppm of the final solution.

Reaktifler	Formül	Tesir Değerliği
Alüminyum potasyum sülfat	$\mathrm{Al} . \mathrm{K}_{(}\left(\mathrm{SO}_{4}\right)_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	4
Amonyak	NH_{3}	1
Amonyum hidrojen ortofosfat	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$	3
Amonyum hidroksit	$\mathrm{NH}_{4} \mathrm{OH}$	1
Amonyum karbonat	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$	2
Amonyum klorür	$\mathrm{NH}_{4} \mathrm{Cl}$	1
Amonyum molibdat	$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	6
Amonyum okzalat	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	2
Amonyum sodyum hidrojen ortofosfat	$\mathrm{NH}_{4} \mathrm{NaHPO}_{4}$	3
Amonyum sülfat	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	2

Reaktifler	Formül	Tesir Değerliği
Amonyum tiyosiyanat	$\mathrm{NH}_{4} \mathrm{CNS}$	1
Arsenik (III) oksit	$\mathrm{As}_{2} \mathrm{O}_{3}$	4
Arsenik trisülfit	$\mathrm{As}_{2} \mathrm{~S}_{3}$	4
Asetik asit	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	1
Bakır oksit	CuO	2
Bakır sülfat $5 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$	2
Baryum hidroksit	$\mathrm{Ba}(\mathrm{OH})_{2}$	2
Baryum karbonat	BaCO_{3}	2
Baryum klorür. $2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	2
Baryum oksit	BaO	2
Baryum peroksit	BaO_{2}	2
Borik asit	$\mathrm{H}_{3} \mathrm{BO}_{3}$	3
Civa (II) klorür	HgCl_{2}	2
Çinko sülfat $7 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{ZnSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$	2
Demir (II) sülfat	$\mathrm{FeSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	1
Ferro oksit	FeO	1
Ferro (II) amonyum sülfat	$\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \cdot \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	1
Formik asit	HCOOH	1
Fosforik asit	$\mathrm{H}_{3} \mathrm{PO}_{4}$	3
Gümüș nitrat	AgNO_{3}	1
Hidroferrosiyanik asit	$\mathrm{H}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$	1
Hidrojen peroksit	$\mathrm{H}_{2} \mathrm{O}_{2}$	2
Hidrojen sülfür	$\mathrm{H}_{2} \mathrm{~S}$	2
Hidroklorik asit	HCl	1
İyot	I	1
Kalay klorür	SnCl_{2}	2
Kalay oksit	SnO	2
Kalsiyum hidroksit	$\mathrm{Ca}(\mathrm{OH})_{2}$	2
Kalsiyum karbonat	CaCO_{3}	2
Kalsiyum klorür $6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2
Kalsiyum oksit	CaO	2
Krom (VI) oksit	CrO_{3}	4
Kurşun (IV) - oksit	PbO_{2}	2
Kükürtdioksit	SO_{2}	2
Laktik asit	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$	1
Magnezyum karbonat	MgCO_{3}	2
Magnezyum klorür	MgCl_{2}	2
Magnezyum klorür $6 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	2
Malik asit	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}$	2

Reaktifler	Formül	Tesir Değerliği
Mangan sülfat	MnSO_{4}	2
Manganez peroksit	MnO_{2}	2
Nitrik asit	HNO_{3}	1
Oksalik anhidrit	$\mathrm{C}_{2} \mathrm{O}_{3}$	2
Okzalik asit $2 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$	2
Perklorik asit	HClO_{4}	1
Potasyum tiyosiyanat	KSCN	1
Potasyum bikarbonat	KHCO_{3}	1
Potasyum bromür	HBr	1
Potasyum bikromat	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	6
Potasyum hidroksit	KOH	1
Potasyum iyodat	KIO_{3}	6
Potasyum iyodit	KI	1
Potasyum karbonat	$\mathrm{K}_{2} \mathrm{CO}_{3}$	2
Potasyum klorür	KCl	1
potasyum nitrat	KNO_{3}	1
Potasyun nitrit	KNO_{2}	2
Potasyum permanganat	KmnO_{4}	5
Potasyum siyanür	KCN	1
Potasyun sülfat	$\mathrm{K}_{2} \mathrm{SO}_{4}$	2
Potasyum sodyum tartarat	$\mathrm{NaKC}_{4} \mathrm{H}_{4} \mathrm{O}_{6} 4 \mathrm{H}_{2} \mathrm{O}$)	2
Potasyum tiyosiyanat	KSCN	1
Potasyum kromat	$\mathrm{K}_{2} \mathrm{CrO}_{4}$	3
Sitrik asit	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} . \mathrm{H}_{2} \mathrm{O}$	3
Sodyum hidroksit	NaOH	1
Sodyum karbonat	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	2
Sodyum klorat	NaClO_{3}	6
Sodyum klorür	NaCl	1
Sodyum nitrat	NaNO_{3}	1
Sodyum nitrit	NaNO_{2}	2
Sodyum oksalat	$\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	2
Sodyum oksit	$\mathrm{Na}_{2} \mathrm{O}$	2
Sodyum sülfit	$\mathrm{Na}_{2} \mathrm{~S}$	2
Sodyum tiyosülfat	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$	1
Sodyumbikarbonat	NaHCO_{3}	1
Süksinik asit	$\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	2
Sülfürik asit	$\mathrm{H}_{2} \mathrm{SO}_{4}$	2
Tartarik asit	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$	2

Solution of the first part of the question.
$\left(\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, \mathrm{Zn}: 65,39 ; \mathrm{S}: 32 ; \mathrm{O}: 16 ; \mathrm{H}: 1.\right)$

First we should convert normality to molarity
$\mathrm{N}=\mathrm{e} \times \mathrm{M} \quad 0,04=2 \times \mathrm{M} \quad \mathrm{M}=0,02$
$0,02 \mathrm{M}$ means $0,02 \mathrm{~mol}$ in 1000 mL $0,002 \mathrm{~mol}$ in 100 mL $0,002 \times \mathrm{MW}$ of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(287.56 \mathrm{~g} / \mathrm{mol})=$
$0,57512 \mathrm{~g}$ of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
Do not forget to explain how you prepare this solution!

```
Second part of the question from grams
This solution contains \(0,57512 \mathrm{~g} \mathrm{ZnSO} .7 \mathrm{H}_{2} \mathrm{O}\) in 100 mL \(287,56 \mathrm{~g} \mathrm{ZnSO} .7 \mathrm{H}_{2} \mathrm{O}\) contains \(\quad 161,56 \mathrm{~g} \mathrm{ZnSO} 4\)
\(0,57512 \mathrm{~g} \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \quad\) contains \(\quad \mathrm{xg} \mathrm{ZnSO} 4\)
\(\mathrm{X}=0,32312 \mathrm{~g} \mathrm{ZnSO}_{4}\) in 100 mL
If \(0,32312 \mathrm{~g} \mathrm{ZnSO} 4\) in 100 mL
\(\mathrm{Xg} \quad\) in 5 mL
\(X=0,016156 \mathrm{~g}\)
```

If $0,016156 \mathrm{~g} \mathrm{ZnSO}_{4}$ presents in 5 mL solution when diluted to 1 L using distilled water this value does not change.

If $0,016156 \mathrm{~g} \mathrm{ZnSO}_{4}$ in 1000 mL
X g in 100 mL
$X=0,0016156 \mathrm{~g}$ in 100 mL This solution is $\% 0,0016156(\mathrm{w} / \mathrm{v})$ or \%0,0016.

Third part of the question If $0,016156 \mathrm{~g} \mathrm{ZnSO}_{4}$ in 1000 mL
$16,156 \mathrm{mg}$ in 1000 mL
16,156 ppm

3 How do you prepare $0,8 \mathrm{~N} 500 \mathrm{~mL}$ hydrogen peroxide solution from $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ stock solution $\mathrm{d}=1,11 \mathrm{~g} / \mathrm{mL} \mathrm{MW}=34 \mathrm{~g} / \mathrm{mol}$

Solution
1- Convert normality to molarity
$\mathrm{N}=\mathrm{e} \times \mathrm{M} \quad 0,8=2 \times \mathrm{M} \quad \mathrm{M}=0,4$
2- Calculate how many gram do you need to prepare this solution.
0,4 M means 0,4 mol in 1000 mL $0,2 \mathrm{~mol}$ in 500 mL $0,2 \times 34=6,8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$
3- Calculate real density
$1 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $1,11 \mathrm{~g}$ total matter but only 30% of this matter is $\mathrm{H}_{2} \mathrm{O}_{2}$
Therefore $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $1,11 \times 0,30=0,333 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$

4- Calculate the needed mL of the solute If 1 mL of solution contains $\quad 0,333 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$
$X \mathrm{~mL}$ of solution contains $\quad 6,8 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2}$
$X=20,42042042042042 \mathrm{~mL}$ or $\mathrm{x}=20,42 \mathrm{~mL}$

Preparing the solution

Select 500 mL volumetric flask. Measure and transfer the calculated volume of the liquid material into the flask, preferably using a funnel to assure no material is lost during transfer. Rinse the sides of the funnel with your solvent (e.g. water for aqueous solutions) down into the flask to capture any residual material adhering to the funnel. Next, fill the flask about halfway with your solvent, cap the flask and swirl. Then, fill the flask with your solvent by carefully adding enough solvent to raise the base of the meniscus of the solution to the level of the etched line. Finally, cap, mix, swirl and store your prepared solution until ready to use.

This 500 mL solution contains $6,8 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}_{2}$, therefore $\% 1.36(\mathrm{w} / \mathrm{v})$ or 13600 ppm

4- How do you prepare 7\% (v/v) ethanol solution using 3\% and 23 \% stock solutions. What is the molarity of this solution (Density of absolute ethanol is $0.789 \mathrm{~g} / \mathrm{mL}$)?

For 100 mL final solution.

If 20 part is	
4 part is	100 mL
$\mathrm{X}=20 \mathrm{~mL}$	

$$
20 \text { part }
$$

In order to prepare this solution we should take 4 part (or 20 mL) from 23% stock solution, transfer it to 100 mL volumetric flask and complete the volume using 3% stock solution.
$7 \%(\mathrm{v} / \mathrm{v})$ means 7 mL of ethanol in 100 mL solution.

If 1 mL of ethanol is $0,789 \mathrm{~g}$
7 mL of ethanol is $\quad \mathrm{xg}$
$X=5,523 \mathrm{~g}$ ethanol in 100 mL solution
$55,23 \mathrm{~g}$ ethanol in 1000 mL
$55,23 / 46,07=1,1988278 \mathrm{~mol}$ or $1,2 \mathrm{M}$.
4- The reaction between propionaldehyde and hydrocyanic acid has been studied at $25^{\circ} \mathrm{C}$. In a certain aqueous solution at $25^{\circ} \mathrm{C}$ the concentrations at various times were as follows.

$[\mathrm{HCN}]$	Reaction
0,1	0,24
0,2	0,12
0,3	0,08
0,4	0,06
0,5	0,05
0,6	0,04
0,7	0,03

If initial HCN concentration is $1.2 \mathrm{M}, 0,35 \mathrm{M}$ or $0,05 \mathrm{M}$ what is the expected reaction times?
We should draw the graphic of Initial conc. Versus 1/ reaction time
[HCN] Reaction time (min) $1 /$ Reaction time

0,1	0,24	6
0,2	0,12	9
0,3	0,08	12,5
0,4	0,06	19
0,5	0,05	19,9
0,6	0,04	25
0,7	0,03	34

You should carefully choose your limit values. For this problem we have to find out the rate of the reaction with the 1.2 M initial concentration therefore your graphic should include 1.2 M .

Draw your trend line and find the answers.

For values outside your experimental area extrapolate the answer.

You can also calculate the slope and determine the graphics equation. For this purpose either use your best fitted experimental data or directly calculate from the trendline.

For graphics intercept at zero $\mathrm{y}=\mathrm{mx}$

For graphics not intercept at zero $\mathrm{y}=\mathrm{mx}+\mathrm{c}$

For this problem when $x=0,2 y=9 y / x=45 y=45 x$

$$
Y=45 \times 1.2=54
$$

You may use computer programs to calculate this value.

$$
y=44,64 x
$$

$$
R^{2}=0,962
$$

5- Hydrogen peroxide reacts with thiosulfate ion in slightly acidic solution as follows.

$$
\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{4} \mathrm{O}_{6}{ }^{2}
$$

This reaction rate is independent of the hydrogen-ion concentration in the pH range 4 to 6 . The following data were obtained at $25{ }^{\circ} \mathrm{C}$ and pH 5.0 . Draw the graphic between initial concentration and $1 /$ reaction rate.

Flask	$0,5 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{2}$	$0,1 \mathrm{M}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	$\mathrm{CH}_{3} \mathrm{COOH} /$ $\mathrm{NaCH}_{3} \mathrm{COOH}$ Buffer pH 5	Distilled Water	Reaction rate s
1	10 mL	0 mL	50 mL	40 mL	4200
2	10 mL	1 mL	50 mL	39 mL	2900
3	10 mL	2 mL	50 mL	38 mL	2500
4	10 mL	5 mL	50 mL	35 mL	1200
5	10 mL	8 mL	50 mL	32 ml	900
6	10 mL	10 mL	50 mL	30 mL	720

First we have to calculate the molarity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in each flask.
For flask 1 concentration is zero.
For Flask 2 we take 1 mL from $0,1 \mathrm{M}$ solution
$0,1 \mathrm{~mol} \quad 1000 \mathrm{~mL}$
$0,0001 \mathrm{~mol} \quad 1 \mathrm{~mL}$
Then we make up to volume to 100 mL .
$0,0001 \mathrm{~mol}$ in 100 mL
$0,001 \mathrm{~mol}$ in 1000 mL or 0,001 molar.
Since this value is hard to write down we can use mmolar (mM) or exponential value $1 \times 10^{-3} \mathrm{M}$ Other values are proportional with the second value.

Flask	$0,5 \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2}$	$0,1 \mathrm{M}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	$\mathrm{CH}_{3} \mathrm{COOH} /$ $\mathrm{NaCH}_{3} \mathrm{COOH}$ Buffer pH 5	Distilled Water	$\left[\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right]$ M	Reaction rate s	1/Reaction rate s-1
1	10 mL	0 mL	50 mL	40 mL	0	4200	0,000238
2	10 mL	1 mL	50 mL	39 mL	0,001	2900	0,000345
3	10 mL	2 mL	50 mL	38 mL	0,002	2500	0,000400
4	10 mL	5 mL	50 mL	35 mL	0,003	1200	0,000833
5	10 mL	8 mL	50 mL	32 ml	0,008	900	0,001111
6	10 mL	10 mL	50 mL	30 mL	0,010	720	0,001389

Flask	$0,5 \mathrm{M}$ $\mathrm{H}_{2} \mathrm{O}_{2}$	$0,1 \mathrm{M}$ $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	$\mathrm{CH}_{3} \mathrm{COOH} /$ $\mathrm{NaCH}_{3} \mathrm{COOH}$ Buffer pH 5	Distilled Water	$\left[\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right]$ M	Reaction rate s	$1 /$ Reaction rate s^{-1}
1	10 mL	0 mL	50 mL	40 mL	0	4200	$2,38 \times 10^{-4}$
2	10 mL	1 mL	50 mL	39 mL	1×10^{-3}	2900	$3,45 \times 10^{-4}$
3	10 mL	2 mL	50 mL	38 mL	2×10^{-3}	2500	4×10^{-4}
4	10 mL	5 mL	50 mL	35 mL	5×10^{-3}	1200	$8,33 \times 10^{-4}$
5	10 mL	8 mL	50 mL	32 ml	8×10^{-3}	900	$11,11 \times 10^{-4}$
6	10 mL	10 mL	50 mL	30 mL	10×10^{-3}	720	$13,89 \times 10^{-4}$

In order to determine graphics equation we have to know the slope ans interceptions.
$Y=m x+c$

$$
\begin{aligned}
& y=1,154 x+2,193 \\
& R^{2}=0,994
\end{aligned}
$$

If you add 250 mL of $\% 3(\mathrm{w} / \mathrm{v}$) sodium acetate ($\mathrm{mw} 82 \mathrm{~g} / \mathrm{mol}$) to $0,4 \mathrm{M} 300 \mathrm{~mL}$ acetic acid (mw 60 $\mathrm{g} / \mathrm{mol}$) solution (pKa acetic acid= 4,76);
a- What would be the final pH of the resulting buffer solution?
$\% 3 \rightarrow 3 \mathrm{~g} 100 \mathrm{~mL} \rightarrow 7,5 \mathrm{~g} \quad 250 \mathrm{~mL} \rightarrow 0,09146 \mathrm{~mol}$ CH3COONa in 250 mL
$0,4 \mathrm{M} \rightarrow 0,4 \mathrm{~mol}$ in $1000 \mathrm{~mL} \rightarrow 0,12 \mathrm{~mol} \mathrm{CH} 3 \mathrm{COOH}$ in 300 mL
$300 \mathrm{~mL}+250 \mathrm{~mL}=550 \mathrm{~mL}$
$\mathrm{pH}=\mathrm{pKa}+\log [$ salt $] /[$ Acid $] \rightarrow \mathrm{pH}=4,76+\log [(0,09146 \mathrm{~mol} / 550 \mathrm{~mL})] /[(0,12 \mathrm{~mol} / 550 \mathrm{~mL})]$
$\mathrm{pH}=4,76-\mathbf{0 , 1 1 7 9 5}=4,642$

```
b- if 5 mL of \(0,1 \mathrm{M} \mathrm{HCl}\) is added to this buffer solution what would be the final pH ?
\(0,1 \mathrm{M} \mathrm{HCl} \rightarrow 0,1 \mathrm{~mol} \mathrm{H}^{+}\)in \(1000 \mathrm{~mL} \rightarrow 0,0005 \mathrm{~mol} \mathrm{H}^{+}\)in 5 mL
Toplam Hacim \(250+300+5=555 \mathrm{~mL}\)
\(\mathrm{HA} \rightarrow \mathrm{A}^{-}+\mathrm{H}^{+}\)
or
\(\mathrm{CH} 3 \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}\)
if \(\mathrm{H}^{+}\)is added to the solution equilbrium shifted to the reactants
\begin{tabular}{rl}
CH 3 COOH & \(\rightarrow{\mathrm{CH} 3 \mathrm{COO}^{-}+\mathrm{H}^{+}}^{\text {A mole }}\) \\
\(\rightarrow\) B mole \(+x\) mole added \\
\(\mathrm{A}+\mathrm{x}\) mol & \(\rightarrow \mathrm{B}-\mathrm{x}\) mole
\end{tabular}
\(0,12 \mathrm{~mol}+0,005 \mathrm{~mol} / 555 \mathrm{~mL} \quad 0,09146-0,005 \mathrm{~mol} / 555 \mathrm{~mL}\)
\(0,1205 \mathrm{~mol} \mathrm{CH} 3 \mathrm{COOH} / 555 \mathrm{~mL} \quad 0,09096 \mathrm{~mol} \mathrm{CH} 3 \mathrm{COO}^{-} / 555 \mathrm{~mL}\)
```

$\mathrm{pH}=\mathrm{pKa}+\log [0,09096 / 555)] /[(0,1205 / 555)=4,6379$
pH decreases by 0,004 if $\mathbf{5 m L} \mathbf{0 , 1} \mathbf{~ M ~ H C l}$ added!
c-if $5 \mathrm{~mL} 0,1 \mathrm{M} \mathrm{HCl}$ added to 550 mL of water what will be the pH of the solution?
$0,0005 \mathrm{~mol} \mathrm{HCl}$ in $555 \mathrm{~mL} \rightarrow 0,0009 \mathrm{~mol} \mathrm{HCl}$ in $1000 \mathrm{~mL} \rightarrow 0,0009 \mathrm{M}$
$\mathrm{pH}=-\log (0,0009)=3,0458$
pH decreases by 1,5962 (dont forget pH scale is logorithmic!)

